| _ | Specification | Symbol | Condition / Comment | | | | | HTS 301-120 SiC Un | | | | | | |-----------------|---|---|---|--|--|--|---|--|--|---|---|---|--| | | Maximum Operating Vo | $V_{O(max)}$ | I _{off} < 270 μADC, T _{case} = 70°C | | | | | | | 30 | kVDC | | | | | Maximum Isolation Volta | VI | | Between HV switch and control / GND, continuously | | | | | | ± 25 | kVDC | | | | S | Max. Housing Insulation | V_{INS} | Betweer | Between switch and housing surface, 3 minutes | | | | | | ± 50 | kVDC | | | | RATINGS | Maximum Turn-On Peal | I _{P(max)} | T_{case} = t_p < 200 μ s, duty cycle <1% | | | | | | 1200 | | | | | | 4 | | | | 25°C | | | | | | | 760 | ADC | | | | | | | | t_p < 10 ms, duty cycle <1% | | | | | | 230 | | | | 5 | | | | | t _p < 100 ms | 100 ms, duty cycle <1% | | | | | 120 | | | | | Maximum Continuous Loa | I _{L(max)} | T _{case} = | | | | | | 10 | ADC | | | | | MAXIMUM | | | 25°C | | | | | | | 240 | | | | | | Max. Continuous Power D | $P_{d(max)}$ | T _{case} = Standard devices & FC, forced air 4 m/s | | | | 140 | | | | | | | | ABSOLUTE | | | 25°C | ' | | | | | | 4000 | Watt | | | | 2 | Linear Derating | | Above | | | | | | | 0.48 | 14/1/ | | | | 20 | On another Tarens and the | - | • | | | | (O-t' DI C) | | 320 | W/K | | | | | AB. | Operating Temperature | T ₀ | Standard devices & options CF, GCF, ILC. (Option DLC) | | | | | | -4070 | C° | | | | | | Storage Temperature R Max. Permissible Magne | Ts
B | Switches with option ILC may require frost protection! | | | | | | -4080
25 | mT | | | | | | Max. Auxilliary Voltage | V _{aux} | Homogeneous steady-field, surrounding the whole switch Built-in overvoltage limiter (replaceable) | | | | WHOLE SWILCH | | | 5.5 | VDC | | | | | Permissible Operating Voltage Range | | V _{aux} | Unipolar operation (one switch pole grounded or floated) | | | | ded or floated) | | | 0 ± 30 | kVDC | | | | Typical Breakdown Voltage Typical Breakdown Voltage | | V _{br} | NOTE: \/ is a test parameter for quality | | | | | _ | | | - | | | | - | | V br | control purposes only. Not applicable in | | | | | | 33 | kVDC | | | | | Typical Off-State Current | | l _{off} | | 0.8xV _O , T _{case} =2570°C, reduced l _{off} on request | | | | < 270 | μADC | | | | | | Typical Turn-On Resistance | | R _{stat} | | vitching path | | | 0.1 x I _{P(max)} , T _{case} =25°C | | | 0.14 | | | | | To both Down the Date The | | | | | | | P(max), T _{case} =25°C | | | 0.18 | | | | | | | ļ | | | | | | 3 | | 0.32 OI | | | | | Typical Propagation Delay Time | | t _{d(on)} | | | | 4 2 | | | | 200 | ns | | | | Typical Output Pulse Jitter | | tj | Impedance matched | | | | | | | 3 | ns | | | | Typical Turn-On Rise Time | | $t_{r(on)}$ | Resistiv | Resistive load, 10-90% $0.1 \times V_{O(max)}, I_L = 0.1 \times I_{p(max)}$ | | | | | | 25 | | | | | | | | $0.8 \times V_{O(max)}$, $I_L = 0.1 \times I_{p(max)}$ | | | | | | 48 | | | | | S | M | | NI - Parit | $0.8 \times V_{O(max)}$, $I_L = 1.0 \times I_{p(max)}$ | | | | | | 55 | ns | | | | CHARACTERISTICS | Maximum Turn-On Time | | t _{on(max)} | No limitation | | | 11. 6 | | | | ∞
000 | | | | S/2 | Minimum Turn-On Time | | t _{on(min)} | ton(min) can be customized. Please consult factory | | | | actory | | 200 | ns | | | | Į. | Maximum Turn-Off Time | | t _{off(max)} | No limitation | | | | | | ∞
200 | | | | | <u></u> | Minimum Turn-Off Time | | t _{off(min)} | toff(min) can be customized. Please consu | | | | | | | 200 | ns | | | Š | Max. Continuous Switching Frequency | | | _ | © V _{aux} = 5.00 V Standard devices without HFS option | | | | | <5
50 | | | | | Ì | Frequency | | | Sw. shutdown if f _(max) is Standard devices with HFS supply Opt. HFS + sufficient cooling option | | | | | | 80 | kHz | | | | | Marrian Drugat Facerra | | 1 0 1 | | | | | | | 1 | | | | | ELECTRICAL | Maximum Burst Frequer | f _{b(max)} | Use option HFB for >10 pulses within 20µs or less | | | | | | 500 | kHz | | | | | 8 | Maximum Number of Puls | N _(max) | @ f _{b(max)} Standard Option I-FB | | | | | | > 10 Use option HFB for >10 >100 | Pulse | | | | | C | | | | Note: Option | n HFB requires external
30VDC and a cpacitano | buffer capacito | 's with a volta(
additional | ge in | | | >100 | | | | 7 | Coupling Capacitance | Сс | rating of > 630VDC and a cpacitance of 100nF per additional Option HFB HVF side against control side | | | | | | <100 | pF | | | | | 7 | Natural Capacitance | | C _N | Between switch poles, @ 0.5 x V _{O(max)} | | | | | | | <50 | pF | | | | Control Voltage Range | | V _{ctrl} | The V _{ctrl} has no impact on the output pulse shape. | | | | | | 3 10 | VDC | | | | | Auxiliary Supply Voltage Range | | Vaux | The +5 V supply is not required in the HFS mode. | | | | | | | 5 | VDC | | | | Typical Auxiliary Supply Current | | I _{aux} | | $V_{aux} = 5.00 \text{ VDC}$, $T_{case} = 25^{\circ}\text{C}$. $0.01 \text{ x f}_{(max)}$ | | (may) | | TBD | 100 | | | | | | Typical Auxiliary Supply Current | | Idux | | , | | | @ f _(max) | (IIIax) | | 800 | mADO | | | | Fault Signal Output | | | Active current limitation above 1A. \bigcirc f _(max) Switch will be turn off, if f>f _(max) , V _{aux} <4.75V or T _{case} >75°C | | | | | | H=4V, L=0.5V | VDC | | | | | o.g o alput | | | Fault condition is indicated by a logical "L" | | | | | | | , 217. | - | | | | Opt. HFS, Ext. Supply Voltage V1 | | V _{HFS(V1)} | Stability ±3%, current consumption <0.4 mA/kHz @ 25°C | | | | | | 15 | VDC | | | | | Opt. HFS, Ext. Supply Voltage V2 | | V _{HFS(V2)} | Stability ±3%, current consumption <0.9 mA/kHz @ 25°C | | | | | | TBD | VDC | | | | | Intrinsic Diode Forward Voltage | | V _F | $T_{case} = 25^{\circ}C$, $I_F = 0.3 \times I_{P(max)}$ | | | | | | | <60 | VDC | | | | Diode Reverse Recovery Time | | t _{rrc} | $T_{case} = 25^{\circ}C$, $I_F = 0.3 \times I_{P(max)}$, $di/dt = 1$ | | | t = 100 A | /µs | | | <50 | ns | | | | Dimensions | | LxWxH | Standard housing | | | | | | | Please contact the | | | | 9 | | | | Devices with option CF, non-isolated cooling fins | | | | ng fins | | | manufactured! | mm ³ | | | SIN | | | <u> </u> | Devices with option DLC | | | | | | | | | | | 5 | Weight | | Standard housing | | | | | | | Please contact the | | | | | 6 | | | | with option CF | | ted cooli | ng fins | | | manufactured! | g | | | | HOUSING | | | Devices with option DLC | | | | | | | | | | | | HOL | Control Cianal Innut | | | ble with Schmitt-Trigger characteristics. Control voltage 2-10 V (3-5 V recommended for low jitter). n is internally connected with the safety earthing terminal (threaded insert) on bottom side. | | | | | | | | | | | | Control Signal Input
Logic GND / 5V Return | | 5 V input is u | t is used for rep rates up to the specified max. frequency f _(max) . Higher rep rates require option HFS. | | | | | | | | | | | | Logic GND / 5V Return
5V Auxiliary Supply | | | ort circuit proof. Indicating switch & driver over-heat, over-frequency, low auxiliary voltage.
, Schmitt-Trigger characteristics for the connection of external safety circuits. L = Switch Inf | | | | | | | it. | | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output | | L compatible | LED Indicators GREEN: "Auxiliary power good, switch OFF". YELLOW: "Control signal received, switch ON". RED: "Fault condition." | | | | | | | | | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators | Pin 5 / Green. TT
GREEN: "Auxilian | y power good | A) Standard switches and switches with option CF, GCF: Thermo trigger 75°C, response time < 60 s @ 3xPd(max), ΔT=25K (40 to 65°C), coolant flow > 31/ min. Separate driver protection. | | | | | | | | rise time < | | | FUNCTION HOL | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input | Pin 5 / Green. TT
GREEN: "Auxilian
A) Standard switch | y power good
hes and switch | | nt flow > 31 / min. Sena | Low Pass. Input filter for increased noise immunity. Option U | | | | | | | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch
∆T=25K (40 to
Option | 65°C), coolar | ow Pass. Input filter | for increased | | • | | | | | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch | 65°C), coolar
LP L
HFB H | ow Pass. Input filter
ligh Frequency Burs | for increased
t (improved c | apability by | external | Option I | I-FWD | Integrated Free-Wheeling Diode. In connection with inductive load only. | | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch
ΔT=25K (40 to
Option
Option | 65°C), coolar
LP L
HFB H | ow Pass. Input filter
ligh Frequency Burs
ligh Frequency Swite | for increased
at (improved c
ching (two au | apability by | external | Option I | I-FWD
I-FWDN | Integrated Free-Wheeling Diode. In connection with inductive load only. Integrated Freewheeling Diode Network. In connection with inductive load | | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch | 65°C), coolar
LP L
HFB H
HFS H | ow Pass. Input filter
ligh Frequency Burs | for increased
at (improved c
ching (two au
uency Burst | apability by
xiliary supply | external
y inputs V1 & V2) | | I-FWD
I-FWDN
PT-C | Integrated Free-Wheeling Diode. In connection with inductive load only. | or. | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch | 65°C), coolar
LP L
HFB H
HFS H
-HFS Ir | ow Pass. Input filter
High Frequency Burs
High Frequency Swit
Integrated High Frequency | for increased
at (improved conting (two au-
uency Burst
acrease the rise | apability by
xiliary supply
and fall time | external
y inputs V1 & V2)
by 20% | Option I | I-FWD
I-FWDN
PT-C
SEP-C | Integrated Free-Wheeling Diode. In connection with inductive load only.
Integrated Freewheeling Diode Network. In connection with inductive load
Pigtail for control connection: Flexible leads (I=75mm) with Iemo connect | or. | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switch
3 s @ 3xPd(max), | y power good
hes and switch
ΔT=25K (40 to
Option
Option
Option
Option | 65°C), coolar LP | ow Pass. Input filter
digh Frequency Burs
digh Frequency Switt
integrated High Frequency
Soft Transition Time de
individually increased
individually increased | for increased
at (improved conting (two au-
uency Burst
acrease the rise
of "Min. On-Tird
of "Min. Off-Tird | apability by axiliary supply and fall time ne" to avoid ne" to avoid | external y inputs V1 & V2) by 20% unwanted unwanted | Option F
Option S | I-FWD
I-FWDN
PT-C
SEP-C
TH | Integrated Free-Wheeling Diode. In connection with inductive load only.
Integrated Freewheeling Diode Network. In connection with inductive load
Pigtail for control connection: Flexible leads (I=75mm) with lemo connection.
Separated control unit. Control unit with LED indicators in a separate hou | or.
sing. | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switc
3 s @ 3xPd(max), | y power good
hes and switch
∆T=25K (40 to
Option
Option
Option
Option
Option | 65°C), coolar LP | ow Pass. Input filter. High Frequency Burst High Frequency Swit- | for increased
at (improved conting (two au-
uency Burst
acrease the rise
of "Min. On-Tird
of "Min. Off-Tird | apability by axiliary supply and fall time ne" to avoid ne" to avoid | external y inputs V1 & V2) by 20% unwanted unwanted | Option I Option S Option S | I-FWD
I-FWDN
PT-C
SEP-C
TH | Integrated Free-Wheeling Diode. In connection with inductive load only. Integrated Freewheeling Diode Network. In connection with inductive load Pigtail for control connection: Flexible leads (I=75mm) with lemo connections Separated control unit. Control unit with LED indicators in a separate hour Tubular Housing Copper Cooling Fins. $P_{d(max)}$ can be increased by the factor 3 to 10 Grounded Cooling Flange. $P_{d(max)}$ can be increased by the factor 3 to 15. | or.
sing. | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switc
3 s @ 3xPd(max), | y power good hes and switch \(\Delta \text{T=25K (40 to} \) \(\text{Option} | 65°C), coolar
 LP | ow Pass. Input filter
digh Frequency Burs
digh Frequency Switt
integrated High Frequency
Soft Transition Time de
individually increased
individually increased | for increased at (improved conting (two authority duency Burst parease the rised "Min. On-Tird" Min. Off-Tir Switch comb | apability by a cand fall time ne" to avoid ne" to avoid ined with cu | external y inputs V1 & V2) by 20% unwanted unwanted stom specific 30kV. | Option I Option S Option S Option C | I-FWD I-FWDN PT-C SEP-C TH CF GCF | Integrated Free-Wheeling Diode. In connection with inductive load only. Integrated Freewheeling Diode Network. In connection with inductive load Pigtail for control connection: Flexible leads (I=75mm) with lemo connection. Separated control unit. Control unit with LED indicators in a separate hou Tubular Housing Copper Cooling Fins. P _{d(max)} can be increased by the factor 3 to 10 | or.
sing. | | | | Logic GND / 5
5V Auxiliary So
Fault Signal O
Inhibit Signal I | nput | | | | | 3 s @ 3xPd(max), ΔT=25K (40 to 65°C), coolant flow > 31 / min. Separate driver prot | 3 s @ 3xPd(max), ΔT=25K (40 to 65°C), coolant flow > 3I / min. Separate driver protection. | 3 s @ 3xPd(max), ∆T=25K (40 to 65°C), coolant flow > 3I / min. Separate driver protection. | 3 s @ 3xPd(max), \(\Delta T=25K (40 to 65°C), coolant flow > 3I / min. Separate driver protection. | 3 s @ 3xPd(max), ∆T=25K (40 to 65°C), coolant flow > 31 / min. Separate driver protection. | 3 s @ 3xPd(max), \(\Delta\)T=25K (40 to 65°C), coclant flow > 3l / min. Separate driver protection. | | | FUNCTION | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switc
3 s @ 3xPd(max), | y power good hes and switch \(\Delta \text{T=25K (40 to} \) \(\text{Option} | 65°C), coolar LP | ow Pass. Input filter
digh Frequency Burs
digh Frequency Switt
integrated High Frequency
Soft Transition Time de
individually increased
individually increased | for increased
at (improved conting (two au-
uency Burst
acrease the rise
of "Min. On-Tird
of "Min. Off-Tird | apability by axiliary supply and fall time ne" to avoid ne" to avoid | external y inputs V1 & V2) by 20% unwanted unwanted | Option I Option S Option S Option C | I-FWD
I-FWDN
PT-C
SEP-C
TH | Integrated Free-Wheeling Diode. In connection with inductive load only Integrated Freewheeling Diode Network. In connection with inductive load only Pigtail for control connection: Flexible leads (I=75mm) with lemo conne Separated control unit. Control unit with LED indicators in a separate h Tubular Housing Copper Cooling Fins. P _{d(max)} can be increased by the factor 3 to | oa
ecti
nou | | | | Logic GND / 5V Return
5V Auxiliary Supply
Fault Signal Output
Inhibit Signal Input
LED Indicators
Temperature Protection | Pin 5 / Green. TT
GREEN: "Auxiliar
A) Standard switc
3 s @ 3xPd(max), | y power goodnes and switch ΔT=25K (40 to Option | 65°C), coolar LP | ow Pass. Input filter
digh Frequency Burs
digh Frequency Swith
the grated High Frequency
Soft Transition Time de
andividually increased
individually increased
Pulser Configuration. | for increased at (improved coching (two authority during the authority during the company | apability by axiliary supply and fall time ne" to avoid ine" to avoid ined with cu | external y inputs V1 & V2) by 20% unwanted unwanted stom specific | Option I Option S Option S Option C Option C | I-FWD I-FWDN PT-C SEP-C TH CF | Integrated Free-Wheeling Diode. In connection with inductive load only. Integrated Freewheeling Diode Network. In connection with inductive load Pigtail for control connection: Flexible leads (I=75mm) with lemo connections Separated control unit. Control unit with LED indicators in a separate hour Tubular Housing Copper Cooling Fins. $P_{d(max)}$ can be increased by the factor 3 to 10 Grounded Cooling Flange. $P_{d(max)}$ can be increased by the factor 3 to 15. | or.
sing. | |