| | Specification | Sumbo | Conditio | n / Commo | nf | | | HTS 241-20 LC2 | Unit | | | |-----------------|---|--|--|---|--|--|--|--|---|--|--| | | <u> </u> | | Condition / Comment | | | | | · | | | | | | Maximum Operating Voltage | V _{O(max)} | | | | | | 24 | kVDC | | | | RATINGS | Maximum Isolation Voltage V _I | | Between HV switch and control / GND, continuously | | | | | ± 40 | kVDC | | | | | Max. Housing Insulation Voltage Maximum Turn-On Peak Curre | | _ | Between switch and housing surface, 3 minutes Tease = tp< 200 µs, duty cycle <1% | | | | ± 40
200 | kVDC | | | | | Maximum Turn-On Peak Curre | nt I _{P(max)} | T _{case} = 25°C | | s, duty cycle <1%
duty cycle <1% | | | 118 | ADC | | | | 2 | | | 25 0 | | | | | 72 | ADC | | | | _ | | | | t_p < 10 ms, duty cycle <1% t_p < 100 ms, duty cycle <1% | | | | 54 | | | | | MAXIMUM | Maximum Continuous Load Cum | | - | | Standard devices | | | 1.26 | ADC | | | | | Iviaximum Continuous Load Cum | ent I _{L(max)} | T _{case} = | | | 1.0 | | 16.5 | ADC | | | | \$ | Max. Continuous Power Dissipati | on P _{d(max)} | | 25°C Devices with option DLC | | | | 17 | | | | | | Iviax. Continuous Power Dissipati | T _{Case} = Standard devices & FC, forced air 4 m/s 25°C Devices with option DLC | | | | 11/5 | 2800 | Watt | | | | | Ę | Linear Derating | | Above Standard devices & FC, forced air 4 m/s | | | | nle | 0.37 | vvall | | | | BSOLUTE | Linear Derating | | 25°C | , | | | 11/5 | 63 | W/K | | | | 386 | Operating Temperature Range | Standard devices & options CF, GCF, ILC. (Option DLC) | | | | n DLC) | -4070 | C° | | | | | 4 | Operating Temperature Range To Storage Temperature Range Ts | | Switches with option ILC may require frost protection! | | | | | -5090 | C° | | | | | Max. Permissible Magnetic Field B | | Homogeneous steady-field, surrounding the whole switch | | | | | 25 | mT | | | | | Max. Auxilliary Voltage V _{aux} | | Built-in overvoltage limiter (replaceable) | | | | , cc. | 5 | VDC | | | | | Permissible Operating Voltage | Dank in overveilage in iner (replaceasie) | | | | | 0 ± 24 | kVDC | | | | | | Permissible Operating Voltage Range V Typical Breakdown Voltage V | | NOTE: Vbr | is a test paran | neter for a | uality | . 0.5 1 | 27 | kVDC | | | | | | · | control purposes only. Not applicable in Toff > 0.5 TIA | | | | | | | | | | | Typical Off-State Current Ic | | 0.8xV _O , T _{case} =2570°C, reduced l _{off} on request | | < 40 | μADC | | | | | | | | Typical Turn-On Resistance | R _{stat} | Each switching path $0.1 \times I_{P(max)}$, $T_{case} = 25^{\circ}C$ | | | | | 4.6 | | | | | | | | t_p < 1 μ s, d | t_p < 1 μ s, duty cycle < 1% 1.0 x $I_{P(max)}$, T_{case} =25°C | | | | 5.4 | | | | | | Turbul Division Control Time | e t _{d(on)} | 1.0 x I _{P(max)} , T _{case} =70°C | | | | | 11.3 | Ohm | | | | | ,, | | | | I _{P(max)} , 0.8 x V _{O(max)} , 50-50% | | | 250 | ns | | | | S | Typical Output Pulse Jitter tj | | | Impedance matched input, V _{aux} / V _{ctrl} = 5.00 VDC | | | | 3 | ns | | | | | Typical Turn-On Rise Time $t_{r(on)}$ | | Resistive I | load, 10-90% | | 0.1 x V _{O(max)} , I _I | | 14.6 | | | | | | | | | $0.8 \times V_{O(max)}$, $I_L = 0.1 \times 10^{-1}$ | | | , | 39 | | | | | | T' O" D' T' | | Desire to the second | l I 40 000/ | | 0.8 x V _{O(max)} , I | | 43 | ns | | | | | Typical Turn-Off Rise Time to | | Resistive | load, 10-90% | | 0.1 x V _{O(max)} , I | | 30 | ns | | | | 1 | Maximum Turn-On Time ton(max) | | 0.8 x V _{O(max)} , I _L = 1.0 x I _{p(max)} | | | | | 80
∞ | | | | | 3/18 | Minimum Turn-On Time | | | d Dlagge | . aanault faatan | | 200 | | | | | | Ē | Maximum Turn-Off Time | No limitati | | eu. Piease | consult factory | / | 200 ∞ | ns | | | | | 5 | Minimum Turn-Off Time | | | nd Diagon | oongult footon | , | 200 | 20 | | | | | CHARACTERISTICS | Max. Continuous Switching | loff(min) Call | toff(min) can be customized. Please consult factory Standard devices without HFS option | | | | 2.5 | ns | | | | | Ě | Frequency | @ V _{aux} = 5.00 V Standard devices with HFS supply | | | | | 100 | | | | | | 0 1 | Trequency | | Sw. shutdown | if f _(max) is exceeded | | | | 200 | kHz | | | | 3 | Maximum Burst Frequency | Han antin | Sw. snutdown if I _(max) is exceeded Opt. HFS + sufficient cooling option Use option HFB for >10 pulses within 20µs or less | | | | 2 | MHz | | | | | ECTRICA | | | | 1 11 101 2 10 | puises w | ithin zous or le | Standard | >100 Use option HFB for >150 | Pulses | | | | S | Maximum Number of Pulses / Burst N _(max) | | @ f _{b(max)} | | | | Option I-HFB | >100 Use option HFB for >150
>1000 | Fuises | | | | 77 | | | | B requires external to
DC and a coacitance | | s with a voltage
additional nulse | Option HFB | >1000 | | | | | • | Coupling Capacitance | | rating of > 630VDC and a cpacitance of 100nF per additional pulse. Option HFB HV side against control side | | | addison as pasco. | Орионти В | <100 | pF | | | | | Natural Capacitance | C _N | Between switch poles, @ 0.5 x V _{O(max)} | | | | | 26 | pF | | | | | | | The V _{ctrl} has no impact on the output pulse shape. | | | | oe. | 310 | VDC | | | | | Auxiliary Supply Voltage Rang | V _{ctrl}
e V _{aux} | The +5 V supply is not required in the HFS mode. | | | | | 5 | VDC | | | | | Typical Auxiliary Supply Currer | | V _{aux} = 5.00 | V _{aux} = 5.00 VDC, T _{case} = 25°C. | | 170 | | | | | | | | '' '' '' | | Active curre | ent limitation a | bove 1A. | | @ f _(max) | 800 | mADC | | | | | Fault Signal Output | | Switch will | l be turn off, i | f f>f _(max) , \ | / _{aux} <4.75V or T | _{case} >75°C | H=4V, L=0.5V | VDC | | | | | | | Fault condition is indicated by a logical "L" | | | | | | | | | | | Opt. HFS, Ext. Supply Voltage | | Stability ±3%, current consumption <0.4 mA/kHz @ 25°C | | | | | 15 | VDC | | | | | Opt. HFS, Ext. Supply Voltage | | Stability ±3%, current consumption <0.9 mA/kHz @ 25°C | | | | z @ 25°C | 117 | VDC | | | | | Intrinsic Diode Forward Voltage | | | $T_{case} = 25^{\circ}C, I_F = 0.3 x I_{P(max)}$ | | | | <26 | VDC | | | | | Diode Reverse Recovery Time t _{rrc} | | $T_{case} = 25$ °C, $I_F = 0.3 \times I_{P(max)}$, $di/dt = 100 \text{ A/}\mu\text{s}$ | | | | | <250 | ns | | | | | Dimensions LxWx | | | | | | | 252x75x56 | | | | | HOUSING | | | Devices with option CF, non-isolated cooling fins Devices with option DLC | | | | | Please contact the | mm ³ | | | | | | | | | | | | manufactured! | | | | | | Weight | Standard housing Devices with option CF, non-isolated cooling fins Devices with option DLC | | | | | Please contact the | | | | | | I | | | | | | | manufactured! | g | | | | | | 0 (10: 11 (15: | | | | | | 116 1 "" | | | | | | | Control Signal Input Pin 1 / Yellow. TTL compatible with Schmitt-Trigger characteristics. Con Pin 2 / Black. The ground pin is internally connected with the safety earth | | | | | | | | | | | | S | Logic GND / 5V Return Pin 2 / Black. The ground pin is internally connected with the safety earthing terminal (the | | | | | | | | | | | | 8 | | V Auxiliary Supply Pin 3 / Red. The 5 V input is used for rep rates up to the specified max. frequency f _(max) . | | | | | | | | | | | Ë | Fault Signal Output Pin 4 / Orange. TTL output, short circuit proof. Indicating switch & driver over-heat, over | | | | | | | | | | | | FUNCTIONS | Inhibit Signal Input Pin 5 / Green. TTL compatible, Schmitt-Trigger characteristics for the connection of external compatible. | | | | | | | | | | | | | LED Indicators GREEN: "Auxiliary power good, switch OFF". YELLOW: "Control signal received, switch | | | | | | | | | | | | FL | Temperature Protection A) Standard switches and switches with option CF, GCF: Thermo trigger 75°C, response tire | | | | | | me < 60 s @ $3xPd(max)$, $\Delta T=25K$ (50 to $75^{\circ}C$). Separate driving | er | | | | | FL | Temperature Frotection (A) | | | | | | se time < 3 s @ 3xPd(max), ΔT=25K (40 to 65°C), coolant flow > 3I / min. Separate driver protection. | | | | | | FL | | tection. B) Switches | HTS 241-20 LC2 Transistor Switch, 24 kVDC, 200 ADC Option LP Low Pass. Input filter for increased noise immunity. Option | | | | | | | | | | _ | pro | kVDC, 200 ADC Opt | | | | | | • | • | | | | _ | pro | kVDC, 200 ADC Opt | ion S-TT Sof | ft Transition Time. | Slower switch | hing speed for simpl | | nCCF Ceramic Flange Housing. Pd(max) can be increased by the factor 3 to 15 | 5. | | | | _ | pro | kVDC, 200 ADC Opt Opt Opt | ion S-TT Sof | ft Transition Time. | Slower switch
st, Improved I | hing speed for simpl
ourst capability by dr | iver. Optio | nCCF Ceramic Flange Housing. P _{d(max)} can be increased by the factor 3 to 19 nCF Copper Cooling Fins. P _{d(max)} can be increased by the factor 3 to 10. | | | | | _ | pro | kVDC, 200 ADC Opti
Opti
Opti
Opti | ion S-TT Sof
ion HFB Hig
ion HFS Hig | ft Transition Time.
th Frequency Burs
th Frequency Swit | Slower switch
st, Improved b
ching (two au | hing speed for simpl | iver. Optio
V1 & V2) Optio | 1 CCF Ceramic Flange Housing. Pd(max) can be increased by the factor 3 to 19 1 CF Copper Cooling Fins. Pd(max) can be increased by the factor 3 to 10. 1 GCF Grounded Cooling Flange (copper). Pd(max) can be increased by the factor 3 to 10. | 15. | | | | _ | pro | kVDC, 200 ADC Opri
Opri
Opri
Opri
Opri | ion S-TT Soft
ion HFB Hig
ion HFS Hig
ion UFTR Ultr | t Transition Time.
th Frequency Burs
th Frequency Swit
ra Fast Thermotric | Slower switch
st, Improved b
ching (two au
gger. Respon | hing speed for simpl
ourst capability by dri
uxiliary supply inputs | iver. Optio
V1 & V2) Optio
n < 5s. Optio | 1 CCF Ceramic Flange Housing. Pd(max) can be increased by the factor 3 to 19 1 CF Copper Cooling Fins. Pd(max) can be increased by the factor 3 to 10. 1 GCF Grounded Cooling Flange (copper). Pd(max) can be increased by the factor 3 to 11. 1 ILC Indirect Liquid Cooling (for water). Pd(max) can be increased by the factor 3 to 15. | 15.
5. | | | | ORDERINGTI | pro | kVDC, 200 ADC Opi
Opi
Opi
Opi
Opi | ion S-TT Sof
ion HFB Hig
ion HFS Hig
ion UFTR Ultr
ion UFTS Ultr | ft Transition Time. th Frequency Burs th Frequency Swit ra Fast Thermotrig ra Fast Thermose R FURTHER PRO | Slower switch
st, Improved to
ching (two augger. Respon
nsor. Respon
DDUCT OPT | hing speed for simpl
ourst capability by dr
uxiliary supply inputs
se time for shut down
se time < 5s. NTC 1
ONS PLEASE REF | iver. Optio V1 & V2) Optio n < 5s. | Coramic Flange Housing. Pd(max) can be increased by the factor 3 to 19 | 15.
5.
to 100. 15. | | |