| | Specification | | Symbo | | Condition / Comment | | | | | HTS 240-1200 SCR Unit | | | |---|--|-------------------------|--|---|---|---|---|---|---|---|----------|--| | | Maximum Operating Voltage | | $V_{O(max)}$ | | l _{off} < 50 μADC, T _{case} = 70°C | | | | | 24 | kVDC | | | SO | Maximum Isolation Vo | VI | | | | GND, continuo | ously | | ± 50 | kVDC | | | | | Max. Housing Insulation Voltage V _{INS} | | | Between | | | face, 3 minutes | 3 | | ± 25 | kVDC | | | | Maximum Turn-On Pe | I _{P(max)} | T _{case} = t _p < 200 µs, duty cycle <1% | | | | | | 12000 | | | | | 7// | | | 25°C t _p < 1 ms, duty cycle < | | | | | | 6000 | ADC | | | | BSOLUTE M. | | | t _p < 10 ms, duty cycle <1%
t _p < 100 ms, duty cycle <1% | | | | | | 4080
2400 | | | | | | Mary Nam Daniellina Da | - | | | | | | | | ADC | | | | | Max. Non-Repetitive Peak Current | | I _{p(nr)} | T _{case} = Half sine single pulse,
25°C Half sine single pulse. | | | | | 24000
48000 | ADC | | | | | Max. Coutinuous Load Current IL | | | 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | | 3.26 | ADC | | | | | | | T _{case} = 25°C | | | | | | 0.20 | 7.00 | | | | Max. Rate-of-Rise of OFF-State Voltage dv | | | @ V _{O(max)} , exponential waveform | | | | | | 150 | kV/ μ | | | | Mary Cartherine Davis | D | T _{cisse} = 25°C Standard devices & FC, forced air 4 m/s | | | | | | 78 | 10/-44 | | | | | Max. Continuous Powe
Linear Derating | P _{d(max)} | Above 25°C | | | C, forced air 4 | | | 1.8 | Watt
W/K | | | | | Operating Temperature Range | | To | | | | * | | | -4075 | C° | | | | Storage Temperature Range | | Ts | Standard devices & options CF, GCF, ILC. (Option DLC) Switches with option ILC may require frost protection! | | | | | | -4075
-5090 | C° | | | | Max. Permissible Magnetic Field | | В | Homogeneous steady-field, surrounding the whole switch | | | | | | 25 | mT | | | | Max. Auxilliary Voltage | | V _{aux} | Built-in overvoltage limiter (replaceable) | | | | | | 5 | VDC | | | | Permissible Operating Voltage Range | | Vo | | | | | | | 0 ± 24 | kVDC | | | | Typical Breakdown Voltage | | V _{br} | NOTE: V _{br} is a test parameter for quality control purposes only. Not applicable in | | | | _f > 0.5 mA | | >26 | kVDC | | | SO | Typical Off-State Current | | l _{off} | 0.8xVo, T _{case} =2570°C, reduced l _{off} on request | | | | | | < 400 | μADC | | | | Typical Holding Current | | ТОП | 0.0400, 1 | Tcase=70°C | | | οι
 | | 35 | mADC | | | | Typical On-State Voltage | | V _{sat} | Fach swit | tching path | | 0.01 x I _{P(max)} | | | 25 | IIIADO | | | | Typical off State Voltage | | v adi | | | | 0.1 x I _{P(max)} | | | 46 | | | | | | | | | , , | | 1.0 x I _{P(max)} | | | 125 | VDC | | | | Typical Propagation Delay Time | | t _{d(on)} | Resistive load, 0.1 x I _{P(max)} , 0.8 x V _{O(max)} , 50-50% | | | | | | 0.4 | μs | | | | Typical Output Pulse Jitter | | tj | | | | $V_{ctrl} = 5.00 VD$ | | | 1 | ns | | | | Typical Turn-On Rise | t _{r(on)} | Resistive | Resistive load, 10-90% $0.1 \times V_{O(max)}$, $I_L = 0.1 \times I_{p(max)}$ | | | | | 550 | | | | | STI | | | | | | | | $_{x)}$, $I_{L} = 0.1 \times I_{p(max)}$ | | 170 | | | | RI | T : IT 0"T | ļ., | | | | | $I_{L} = 1.0 \text{ x } I_{p(max)}$ | | 500 | ns | | | | ;TE | Typical Turn-Off Time | $t_{\text{off,}}t_{q}$ | Resistive | Resistive load, 10-90% $0.1 \times V_{O(max)}, I_L = 0.1 \times I_{p(max)}$ | | | | tbd. | ns | | | | | CHARACTERISTICS | On Time | + | $0.8 \times V_{O(max)}$, $I_L = 1.0 \times I_{p(max)}$ | | | | IL = 1.0 X Ip | o(max) | 35∞ | | | | | | Internal Driver Recovery Time | | t _{on} | | | | | | | 1000 | ns
µs | | | | Max. Continuous Switching | | f _(max) | Standard devices without HFS option | | | | | tion | 1000 | μο | | | 46 | Frequency | | I(IIIax) | @ V _{aux} = ! | @ V _{aux} = 5.00 V Standard devices without in 3 option | | | | | tbd. | | | | NC. | | | | Sw. shutdown | Sw. shutdown if f _(max) is exceeded Opt. HFS + sufficient cooling option | | | | , , | | | | | 100 | Maximum Burst Frequency | | f _{b(max)} | Use option HFB for >10 pulses within 20µs or less | | | | • • | | 10 | kHz | | | | Maximum Number of Pulses / Burst | | N _(max) | @ f _{b(max)} Standard | | | | | | 150 Use option HFB for >150 | Pulses | | | | | , , | - , , | Note: Option HFB requires external buffer capacitors with a voltage rating of > 630VDC and a cpacitance of 100nF per additional pulse. Option I-HFB Option HFB | | | | FB | >1000 | | | | | | | | | | | | | rating of > 630 | | >10000 | | | | | Coupling Capacitance | | Cc | HV side against control side | | | | 320 | pF | | | | | | Control Voltage Range | | V _{ctrl} | | The V _{ctrl} has no impact on the output pulse shape. | | | | | 4 5 | VDC | | | | Auxiliary Supply Voltage Range | | Vaux | | The +5 V supply is not required in the HFS mode. | | | | 5 | VDC | | | | | Typical Auxiliary Supply Current | | l _{aux} | | | 0.01 x f _{(ma} | ax) | tbd. | ADC | | | | | | Fault Circuit Outroit | | | Active current limitation above 1A. @ f _(max) | | | | | | 600 | mADC | | | | Fault Signal Output | | | Switch will be turn off, if f>f _(max) , V _{aux} <4.75V or T _{case} >75°C Fault condition is indicated by a logical "L" | | | | | | H=4V, L=0.5V | VDC | | | | Trigger Voltage Range | | V _{TR} | Switching behaviour is not influenced by trigger quality | | | | nuality | | <10 | VDC | | | | Dimensions | | LxWxH | | | | | quality | | Please contact the | 100 | | | 9 | Dimensions | EXTEN | | Devices with option CF, non-isolated cooling fins | | | | | manufactured! | mm ³ | | | | HOUSING | | | | Devices with option DLC | | | | | manatarea. | | | | | Ž | Weight | ı | Standard | Standard housing | | | | Please contact the | | | | | | НС | | | Devices with option CF, non-isolated cooling fins | | | | | | manufactured! | g | | | | | | Devices with option DLC | | | | | | | | | | | | | Control Signal Input Pin 1 / Yellow. TTL compatible with Schmitt-Trigger characteristics. Control voltage 2-10 | | | | | | | | e 2-10 V (3 | 3-5 V recommended for low jitter). | | | | Logic GND / 5V Return Pin 2 / Black. The ground pin is internally connected with the safety earthing terminal (threaded insert) on bottom side. | | | | | | | | | | | | | | 5V Auxiliary Supply Pin 3 / Red. The 5 V input is used for rep rates up to the specified max. frequency f _(max) . Higher rep rates require option HFS. | | | | | | | | | | | | | | 710 | Fault Signal Output Pin 4 / Orange. TTL output, short circuit proof. Indicating switch & driver over-heat, over- | | | | | | | , over-freq | uency, low auxiliary voltage. L = Fault. | | | | | FUNCTIONS | Inhibit Signal Input Pin 5 / Green. TTL compatible, Schmitt-Trigger characteristics for the connection of exte | | | | | | | of external | safety circuits. L = Switch Inhibited. | | | | | | LED Indicators | | • | er good, switch OFF". YELLOW: "Control signal received, switch ON". RED: "Fault condition, switch OFF" | | | | | | | | | | | Temperature Protection | | | | | | | | | 60 s @ 3xPd(max), ΔT =25K (50 to 75°C). Separate dr | river | | | | | | n option DLC: 65°C, response time < 3 s @ 3xPd(max), ∆T=25K (40 t | | | | | | | | | | | | HTS 240-1200 SCR Thyristo | | Option LP Low Pass. Input filter for increased noise immunity. Option Coption S-TT Soft Transition Time. Slower switching speed for simplified EMC. Option C | | | | | | • | | | | | | | Opti | ů. i | | | | | Option CCF
Option CF | Ceramic Flange Housing. P _{d(max)} can be increased by the factor 3 to
Copper Cooling Fins. P _{d(max)} can be increased by the factor 3 to 10. | | | | | GT! | | | O-4! | | | | | | JUNUII LE | | | | | RINGTI | | | | | • • | | uxiliary supply input | | Option GCF | | | | | DERINGTI | | | Opti | on HFS Hi
on UFTR UI | gh Frequency Swi
tra Fast Thermotri | tching (two au
gger. Respon | uxiliary supply input
se time for shut dov | s V1 & V2)
vn < 5s. | Option GCF
Option ILC | Grounded Cooling Flange (copper). P _{d(max)} can be increased by the factor 3 Indirect Liquid Cooling (for water). P _{d(max)} can be increased by the factor 3 to | 3 to 15. | | | ORDERINGTI | | | Opti | on HFS Hi
on UFTR UI
on UFTS UI | gh Frequency Swi
tra Fast Thermotri
tra Fast Thermose | tching (two au
gger. Respon
ensor. Respor | uxiliary supply input | s V1 & V2)
vn < 5s.
10k / ± 1% | Option GCF
Option ILC
Option DLC | Grounded Cooling Flange (copper). P _{d(max)} can be increased by the factor 3 Indirect Liquid Cooling (for water). P _{d(max)} can be increased by the factor 3 to Direct Liquid Cooling (for FPE/PFC). P _{d(max)} can be increased by the factor 1 | 3 to 15. | |